skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Malitch, KN"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In order to gain further insights into the origin of platinum-group minerals (PGM) and the source of the highly siderophile elements (HSE: Os, Ir, Ru, Pt, Pd, Re) in the chromite deposits associated with the Urals ophiolitetype massifs, we carried out a mineralogical, HSE abundance, and Pt-Re-Os isotope study of chromitites and PGM from the Verkh-Neivinsk and Alapaevsk dunite-harzburgite massifs in the Middle Urals. The chromitites are characterized by negatively-sloped Bulk Silicate Earth (BSE)-normalized HSE patterns, consistent with the predominance of PGM of the Ir-group platinum-group elements (PGE), i.e., Os-Ru-Ir alloys and Ru–Os sulfides, over the PGM of the Pd-group PGE, i.e., stibiopalladinite and geversite. These two groups of PGM are interpreted to represent the primary and secondary mineral assemblages, respectively. The observed HSE patterns in the studied chromitites are typical of those formed in supra-subduction zone (SSZ) settings. The near-chondritic average initial γ187Os and μ186Os values in the chromitites and PGM of the Verkh-Neivinsk massif indicate that its HSE budget was derived from the convecting upper mantle source that evolved with time-integrated nearchondritic Re/Os and Pt/Os ratios. These features are also typical of the sources of most Archean and Proterozoic mafic-ultramafic rocks worldwide. In contrast to the Verkh-Neivinsk massif rocks, the Alapaevsk massif chromitites show radiogenic initial γ187Os values indicating evolution of the mantle source of these rocks with a supra-chondritic time-integrated Re/Os ratio. This long-term enrichment in Re relative to Os could be the result of interaction of the source peridotites with 187Os-enriched melts derived from ancient recycled oceanic crust. 
    more » « less
    Free, publicly-accessible full text available May 29, 2026